Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Tradit Chin Med ; 44(2): 260-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504532

RESUMO

OBJECTIVE: To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli. METHODS: High performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope (HPLC-HESI-HRMS) was used to analyze the chemical constituents of the non-volatile ingredients of patchouli. The anti-inflammatory activity of ingredients was evaluated using lipopolysaccharide (LPS) induced RAW264.7 cell inflammation model, and the anti-inflammatory mechanism was investigated using multivariate statistical analysis of cell metabolomics. RESULTS: The non-volatile ingredients of patchouli were characterized by HPLC-HESI-HRMS, and 36 flavonoids and 18 other components were identified. These ingredients of patchouli not only had a good protective effect on the LPS-induced inflammation model of RAW264.7 cells, but also regulated the expression levels of arginine, L-leucine, cholesterol, fructose and sorbitol by down-regulating arginine metabolism, aminoacyl-tRNA biosynthesis, polyol/sorbitol pathway, so as to reduce inflammation and reduce cell damage. CONCLUSION: The non-volatile ingredients of patchouli had good anti-inflammatory effect and exerted its curative effect by regulating endogenous metabolic pathway to reduce inflammatory response.


Assuntos
Lipopolissacarídeos , Pogostemon , Humanos , Cromatografia Líquida de Alta Pressão , Elétrons , Anti-Inflamatórios/farmacologia , Metabolômica , Inflamação , Pogostemon/química , Arginina , Sorbitol
2.
ScientificWorldJournal ; 2024: 9844242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390436

RESUMO

Indonesia is an important essential oil-exporting country globally, where 40 types of essential oils have been traded on the international market and are products of Indonesia. However, the quality and quantity of patchouli oil produced in Indonesia are still low. Most essential oil processing units use simple or traditional technology and generally have limited production capacity. This study aimed to obtain the optimum water flow rate in a condenser system for patchouli oil production in Maluku, Indonesia. Patchouli oil extraction from fresh patchouli leaves and twigs was carried out by increasing the condenser water discharge rate. Patchouli oil extraction with a condenser cooling water discharge treatment of 1.74 L/min and drying time for 5 days produced the highest patchouli oil yield of 1.4%. The greater the condenser water discharge rate, the better the yield and accumulation of patchouli oil recovery obtained. In addition, based on the results of the analysis of the composition of patchouli oil compounds with GCMS, it can be seen that 13 compounds can be detected in patchouli oil. The three main components of patchouli oil in all condenser cooling water treatments were alpha-guaiene, delta-guaiene, and patchouli alcohol. Considering the results of all parameters mentioned above, the treatment of the condenser cooling water discharge of 1.74 L/min and drying time for 5 days increases the quality and quantity of patchouli oil.


Assuntos
Azulenos , Óleos Voláteis , Pogostemon , Sesquiterpenos de Guaiano , Destilação , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/análise
3.
Arch Microbiol ; 206(2): 75, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261081

RESUMO

Patchouli (Pogostemon cablin), a highly valued medicinal plant, suffers significant economic losses following infection with Broad bean wilt virus 2 (BBWV-2) and Peanut stripe virus (PStV). In this study, a field-based isothermal technique called reverse transcription loop-mediated isothermal amplification (RT-LAMP) was established for an early and specific detection of BBWV-2 and PStV. The oligo primers were designed to target the coat protein genes of PStV and BBWV-2. The reaction conditions, such as temperature and time duration, were optimized to 65 °C for 60 min. The LAMP amplicons positive for PStV and BBWV-2 revealed characteristic ladder-type bands following agarose gel electrophoresis. Further, a colorimetric assay using a metal ion-based indicator (Hydroxy-naphthol blue, HNB) was conducted to visualize the amplified products with the naked eye, thus facilitating accessibility to field practices. The assay developed in this study was found to be virus specific, and was 100 times more sensitive than RT-PCR. Thus, the RT-LAMP assay established in this study is quick, reliable, and cost-effective for the accurate identification of BBWV-2 and PStV. It will facilitate the screening of patchouli planting materials.  Further, it may reduce the risk of virus spread and could be helpful in phytosanitary programs.


Assuntos
Fabavirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Pogostemon , Potyvirus , Transcrição Reversa
4.
BMC Plant Biol ; 24(1): 8, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163903

RESUMO

Patchoulol, a valuable compound belonging to the sesquiterpenoid family, is the primary component of patchouli oil produced by Pogostemon cablin (P. cablin). It has a variety of pharmacological and biological activities and is widely used in the medical and cosmetic industries. However, despite its significance, there is a lack of research on the transcriptional modulation of patchoulol biosynthesis.Salicylic acid (SA), is a vital plant hormone that serves as a critical signal molecule and plays an essential role in plant growth and defense. However, to date, no studies have explored the modulation of patchoulol biosynthesis by SA. In our study, we discovered that the application of SA can enhance the production of patchoulol. Utilizing transcriptome analysis of SA-treated P. cablin, we identified a crucial downstream transcription factor, PatWRKY71. The transcription level of PatWRKY71 was significantly increased with the use of SA. Furthermore, our research has revealed that PatWRKY71 was capable of binding to the promoter of PatPTS, ultimately leading to an increase in its expression. When PatWRKY71 was silenced by a virus, the expression of both PatWRKY71 and PatPTS was reduced, resulting in the down-regulation of patchoulol production. Through our studies, we discovered that heterologous expression of PatWRKY71 leads to an increase in the sensitivity of Arabidopsis to salt and Cd, as well as an outbreak of reactive oxygen species (ROS). Additionally, we uncovered the regulatory role of PatWRKY71 in both patchoulol biosynthesis and plant defense response. This discovery provided a theoretical basis for the improvement of the content of patchoulol and the resistance of P. cablin through genetic engineering.


Assuntos
Arabidopsis , Pogostemon , Sesquiterpenos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Pogostemon/genética , Sesquiterpenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
5.
Fitoterapia ; 173: 105751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977303

RESUMO

Three new α-pyrone derivatives cytospotones A-C (1-3) and a new cyclohexenone derivative cytospotone D (4) together with four known α-pyrones were isolated from the endophytic fungus Cytospora sp. A879 of Pogostemon cablin (Blanco) Benth. The structures of 1-4 were elucidated primarily by spectroscopic methods (1D, 2D NMR and HRESIMS), ECD spectra analyses, and ECD calculations. Furthermore, the four new compounds (1-4) were evaluated for their anti-inflammatory and α-glucosidase inhibitory activities. The results showed that compound 1 had moderate inhibitory effect on LPS-induced NO production in RAW 264.7 macrophages.


Assuntos
Ascomicetos , Pogostemon , Estrutura Molecular , Ascomicetos/química , Espectroscopia de Ressonância Magnética , Pironas
6.
Physiol Plant ; 175(6): e14055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148188

RESUMO

Patchouli alcohol, a significant bioactive component of the herbal plant Pogostemon cablin, has considerable medicinal and commercial potential. Several genes and transcription factors involved in the biosynthesis pathway of patchouli alcohol have been identified. However, so far, regulatory factors directly interacting with patchouli synthase (PTS) have not been reported. This study was conducted to analyze the interaction between PcENO3 and PcPTS to explore the molecular regulation effect of PcENO3 on patchouli alcohol biosynthesis. PcENO3, a homologous protein of Arabidopsis ENO3 belonging to the enolase family, was identified and characterized. Subcellular localization experiments in Arabidopsis protoplast cells indicated that the PcENO3 protein was localized in both the cytoplasm and nucleus. The physical interaction between PcENO3 and PcPTS was confirmed through yeast two-hybrid (Y2H), GST pull-down, and bimolecular fluorescence complementation assays. Furthermore, the Y2H assay demonstrated that PcENO3 could also interact with JAZ proteins in the JA pathway. Enzymatic assays showed that the interaction with PcENO3 increased the catalytic activity of patchoulol synthase. Additionally, suppression of PcENO3 expression with VIGS (virus-induced gene silencing) decreased patchouli alcohol content compared to the control. These findings suggest that PcENO3 interacts with patchoulol synthase and modulates patchoulol biosynthesis by enhancing the enzymatic activity of PcPTS.


Assuntos
Arabidopsis , Pogostemon , Sesquiterpenos , Pogostemon/genética , Pogostemon/metabolismo , Arabidopsis/metabolismo , Sesquiterpenos/metabolismo
7.
PLoS One ; 18(9): e0290402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37738267

RESUMO

Patchouli (Pogostemon cablin) is an aromatic plant, and its oil has diverse applications in medicine, food, and cosmetics. Patchouli alcohol is the principal bioactive constituent of its volatile oil. In China, patchouli is typically categorized into two types: patchoulol-type (PA-type) and pogostone-type (PO-type). The study evaluated physiological and biochemical indicators, phytohormone metabolites and conducted transcriptome and proteome analyses on both two chemotypes. The PA-type exhibited higher levels of chlorophyll a, b, and carotenoids than the PO-type. In total, 35 phytohormone metabolites representing cytokinin, abscisic acid, gibberellin, jasmonic acid, and their derivatives were identified using UPLC-MS/MS, 10 of which displayed significant differences, mainly belong to cytokinins and jasmonates. Transcriptome analysis identified 4,799 differentially expressed genes (DEGs), while proteome analysis identified 150 differentially expressed proteins (DEPs). Regarding the transcriptome results, the DEGs of the PO-type showed significant downregulation in the pathways of photosynthesis, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, sesquiterpene and triterpenoid biosynthesis, and starch and sucrose metabolism, but upregulation in the pathway of zeatin synthesis. A combination of transcriptome and proteome analyses revealed that the DEGs and DEPs of lipoxygenase (LOX2), ß-glucosidase, and patchouli synthase (PTS) were collectively downregulated, while the DEGs and DEPs of Zeatin O-xylosyltransferase (ZOX1) and α-amylase (AMY) were jointly upregulated in the PO-type compared to the PA-type. Differential levels of phytohormones, variations in photosynthetic efficiency, and differential expression of genes in the sesquiterpene synthesis pathway may account for the morphological and major active component differences between the two chemotypes of patchouli. The findings of this study offer novel perspectives on the underlying mechanisms contributing to the formation of the two patchouli chemotypes.


Assuntos
Pogostemon , Transcriptoma , Pogostemon/genética , Reguladores de Crescimento de Plantas , Clorofila A , Cromatografia Líquida , Proteoma , Proteômica , Zeatina , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Citocininas
8.
Molecules ; 28(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764451

RESUMO

Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.


Assuntos
Óleos Voláteis , Resíduos de Praguicidas , Praguicidas , Pogostemon , Cromatografia Líquida , Espectrometria de Massas em Tandem , Resíduos de Praguicidas/análise , Óleos Voláteis/química
9.
Phytochemistry ; 214: 113829, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597718

RESUMO

Fifteen previously undescribed sesquiterpenoids (pogocablenes A-O), three first discovered natural patchoulol-type ones, coupled with fourteen known ones, were isolated from the aerial parts of Pogostemon cablin. Among them, pogocablenes A and B, a pair of C2 epimers, possessed an unusual carbon skeleton with bicyclo[4.3.1]decane core. Pogocablene C, originated from eudesmane-type sesquiterpenoid, had an unprecedented bicyclo[5.4.0]undecane scaffold with a peroxy hemiactetal moiety. Pogocablene D possessed a rare tricyclo[5.2.2.01,5]undecane carbon skeleton derived from guaiane-type sesquiterpenoid. Pogocablene E was a 4,5-seco-guaiane derivative owning a peroxy hemiactetal unit and a spirocyclic skeleton. Pogocablene M was a nor-patchoulol-type sesquiterpenoid with α,ß-unsaturated ketone moiety. Their structures with absolute configuration were determined by extensive spectroscopic analysis, in combination with quantum chemical calculation. In addition, the plausible biogenetic pathways of pogocablenes A-E were proposed. Furthermore, all isolates were evaluated for anti-influenza virus and anti-inflammatory effects.


Assuntos
Pogostemon , Sesquiterpenos , Carbono , Sesquiterpenos/farmacologia
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446145

RESUMO

As an important medicinal and aromatic plant, patchouli is distributed throughout most of Asia. However, current research on patchouli's genetic diversity is limited and lacks genome-wide studies. Here, we have collected seven representative patchouli accessions from different localities and performed whole-genome resequencing on them. In total, 402,650 single nucleotide polymorphisms (SNPs) and 153,233 insertions/deletions (INDELs) were detected. Based on these abundant genetic variants, patchouli accessions were primarily classified into the Chinese group and the Southeast Asian group. However, the accession SP (Shipai) collected from China formed a distinct subgroup within the Southeast Asian group. As SP has been used as a genuine herb in traditional Chinese medicine, its unique molecular markers have been subsequently screened and verified. For 26,144 specific SNPs and 16,289 specific INDELs in SP, 10 of them were validated using Polymerase Chain Reaction (PCR) following three different approaches. Further, we analyzed the effects of total genetic variants on genes involved in the sesquiterpene synthesis pathway, which produce the primary phytochemical compounds found in patchouli. Eight genes were ultimately investigated and a gene encoding nerolidol synthetase (PatNES) was chosen and confirmed through biochemical assay. In accession YN, genetic variants in PatNES led to a loss of synthetase activity. Our results provide valuable information for understanding the diversity of patchouli germplasm resources.


Assuntos
Pogostemon , Pogostemon/genética , Análise de Sequência de DNA , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Ásia
11.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2316-2324, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282860

RESUMO

Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.


Assuntos
Óleos Voláteis , Pogostemon , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Óleos Voláteis/metabolismo
12.
Genomics ; 115(4): 110643, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37217084

RESUMO

MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.


Assuntos
Arabidopsis , Pogostemon , Pogostemon/genética , Pogostemon/metabolismo , Proteínas de Plantas/genética , Filogenia , Arabidopsis/genética , Fatores de Transcrição/metabolismo
13.
Arch Microbiol ; 205(5): 179, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029820

RESUMO

Pogostemon cablin (Blanco) Benth (PCB), a medicinal and edible homologous Chinese herb, has a protective effect on the structure and function of intestine. In this study, we aimed to investigate the effect of PCB granule (PCBG) on the improvement of irinotecan-induced intestinal mucositis and the regulation of intestinal microorganisms in mice. Our results demonstrated that PCBG supplementation significantly improved diarrhea symptoms caused by irinotecan, as evidenced by inhibiting weight loss, reversing intestinal atrophy, protecting against splenomegaly and balancing oxidative stress. Furthermore, compared with the model group, PCBG restored the intestinal morphology and improved intestinal barrier dysfunction by promoting the expression of tight junction proteins and mucin. Moreover, high-throughput sequencing analysis revealed that PCBG improved the flora disorder caused by irinotecan and regulated microbial community structure, such as decreasing the relative abundance of Bacteroides as well as increasing the relative abundance of Lactobacillus. Meanwhile, the disordered microbial functions in intestinal mucositis mice were recovered more closely to the controls by PCBG. Finally, we found that a robust correlation between the specific microbiota and intestinal mucositis-related index. In summary, these findings revealed the beneficial effects of PCBG on the intestinal barrier and gut microbiota of irinotecan-induced intestinal mucositis, which may be one of the potential strategies to reduce the clinical side effects of irinotecan.


Assuntos
Microbioma Gastrointestinal , Mucosite , Pogostemon , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Irinotecano/efeitos adversos , Irinotecano/metabolismo , Mucosa Intestinal , Intestinos
14.
J Med Food ; 26(4): 255-261, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37071615

RESUMO

Patchouli alcohol (PA) is a tricyclic sesquiterpene and the dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). It has been reported to possess diverse health-beneficial activities, including anti-inflammatory, antiobese, and anticancer activities. However, preclinical studies are required to explore the possibility of developing PA as a promising functional and promising drug for the prevention and treatment of human diseases. In this study, we used animal models to examine whether PA shows benefits in inflammation-induced colorectal cancer and obesity-induced diabetes. ApcMin/+ mice for colorectal cancer model were treated PA 0, 25 and 50 mg/kg body weight three times a week for 6 weeks along with 2% dextran sulfate sodium (DSS) in drinking water for 1 week. High-fat diet (HFD)-induced obesity mice were treated with PA 0, 25, and 50 mg/kg bodyweight three times a week for 8 weeks. Oral administration of PA to ApcMin/+ mice treated with DSS significantly suppressed formation and development of tumors in both small and large intestines. In cell culture using Caco-2 human colorectal cancer cells, treatment of culture media with PA suppressed proliferation and induced G1-phase growth arrest. In a mouse model of HFD-induced obesity, glucose tolerance tests indicated the same orally administered dose of PA to significantly reduce blood glucose. In vitro assays in differentiated C2C12 myocytes further demonstrated PA to significantly enhance glucose uptake and increase phosphorylation of 5' adenosine monophosphate-activated protein kinase and protein kinase B. This study demonstrates that PA might possess health beneficial effects on colorectal cancer and obesity-induced diabetes.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus , Pogostemon , Sesquiterpenos , Camundongos , Humanos , Animais , Células CACO-2 , Obesidade/complicações , Obesidade/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Diabetes Mellitus/tratamento farmacológico
15.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110702

RESUMO

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Assuntos
Óleos Voláteis , Plantas Medicinais , Pogostemon , Quercetina , Óleos Voláteis/farmacologia , Óleos Voláteis/química
16.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903266

RESUMO

Research on the manufacture of hydrogel films from polyvinyl alcohol, corn starch, patchouli oil, and silver nanoparticles, (PVA/CS/PO/AgNPs, respectively) was completed. The silver nanoparticles used in this study resulted from green synthesis using local patchouli plants (Pogostemon cablin Benth). Aqueous patchouli leaf extract (APLE) and methanol patchouli leaf extract (MPLE) are used in the synthesis of phytochemicals (green synthesis), which are then blended in the production of PVA/CS/PO/AgNPs hydrogel films, which are then cross linked with glutaraldehyde. The results demonstrated that the hydrogel film was flexible, easy to fold, and free of holes and air bubbles. The presence of hydrogen bonds between the functional groups of PVA, CS, and PO was revealed using FTIR spectroscopy. SEM analysis revealed that the hydrogel film was slightly agglomerated and did not exhibit cracking or pinholes. The analysis of pH, spreadability, gel fraction, and swelling index showed that the resulting PVA/CS/PO/AgNP hydrogel films met expected standards except for the organoleptic properties of the resulting colors, which tended to be slightly darker in color. The formula with silver nanoparticles synthesized in methanolic of patchouli leaf extract (AgMENPs) had the highest thermal stability compared to hydrogel films with silver nanoparticles synthesized in aqueous of patchouli leaf extract (AgAENPs). The hydrogel films can be safely used up to 200 °C. The antibacterial studies revealed that the films inhibited the growth of both Staphylococcus aureus and Staphylococcus epidermis, as determined by the disc diffusion method, with the best antibacterial activity being against Staphylococcus aureus. In conclusion, the hydrogel film F1, loaded with silver nanoparticles biosynthesized in aqueous of patchouli leave extract (AgAENPs) and light fraction of patchouli oil (LFoPO) performed the best activity against both Staphylococcus aureus and Staphylococcus epidermis.


Assuntos
Nanopartículas Metálicas , Pogostemon , Álcool de Polivinil/química , Prata/química , Zea mays , Nanopartículas Metálicas/química , Amido , Antibacterianos/farmacologia , Staphylococcus aureus , Extratos Vegetais/química , Hidrogéis
17.
Nat Prod Res ; 37(3): 434-440, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34523376

RESUMO

A new furfural derivative, pogoscafuran A (1), a new natural product, HMF levulinate (2), together with four known compounds (3-6) were isolated from an extract of the leaves and stems of Pogostemon cablin (Blanco) Benth. Their structures were elucidated on the basis of extensive spectroscopic analyses and single-crystal X-ray crystallography. Compound 1 was the first example of natural furfural derivative with a unique C5-C1' linkage between a molecule of furfural and 3-methyl-2-cyclopentenone moiety. The plausible biogenetic pathway for the new compound 1 was proposed. All these isolated compounds were tested for their inhibitory effects on the nitric oxide (NO) production induced by lipopolysaccharide in RAW264.7 cells, and only compound 1 exhibited weak inhibitory activity.


Assuntos
Pogostemon , Furaldeído , Folhas de Planta/química
18.
Genes Genomics ; 45(1): 123-134, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670995

RESUMO

BACKGROUND: Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE: The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS: An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS: The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION: This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.


Assuntos
COVID-19 , Pogostemon , Ralstonia solanacearum , Ralstonia solanacearum/genética , Pogostemon/genética , Pogostemon/microbiologia , COVID-19/genética , Virulência/genética , Genes Bacterianos
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981307

RESUMO

Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.


Assuntos
Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Pogostemon , Óleos Voláteis/metabolismo
20.
Pharm Pat Anal ; 11(6): 213-224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36511100

RESUMO

Pogostemon cablin (Pogostemon patchouli or Patchouli) is known for its essential oil and is a popular medicinal herb in Indian Ayurveda and traditional Chinese medicine. This review covers patent articles on the P. cablin plant's therapeutic effects. The patent literature was collected using a thorough, comprehensive search on databases like Thomson Innovation, Espacenet, Patentscope, The Lens and Patent digital libraries of different Jurisdictions, including IPO, USPTO, CNIPA, inPASS, KIPO, JPO, etc. Despite the vast number of review articles on non-patent literature, none of the articles reviewed the patent literature. This current P. cablin literature analysis study will facilitate bridging the gap between further exploring the potential of this plant through novel investigations.


Assuntos
Óleos Voláteis , Pogostemon , Sesquiterpenos , Óleos Voláteis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...